Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli

نویسندگان

  • Rachel Armoza-Zvuloni
  • Avi Schneider
  • Daniel Sher
  • Yeala Shaked
چکیده

Corals make use of different chemical compounds during interactions with prey, predators and aggressors. Hydrogen Peroxide (H2O2) is produced and released by a wide range of organisms as part of their defense against grazers or pathogens. In coral reefs, the large fluxes and relatively long half-life of H2O2, make it a potentially important info-chemical or defense molecule. Here we describe a previously unstudied phenomenon of rapid H2O2 release from the reef-building coral Stylophora pistillata during feeding on zooplankton and in response to chemical and physical stimuli. Following stimuli, both symbiotic and bleached corals were found to rapidly release H2O2 to the surrounding water for a short period of time (few minutes). The H2O2 release was restricted to the site of stimulus, and an increase in physical stress and chemical stimuli concentration resulted in elevated H2O2 release. Omission of calcium (a key regulator of exocytotic processes) from the experimental medium inhibited H2O2 release. Hence we suggest that H2O2 is actively released in response to stimuli, rather than leaking passively from the coral tissue. We estimate that at the site of stimulus H2O2 can reach concentrations potentially high enough to deter predators or motile, potentially pathogenic, bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Hydrogen Peroxide Release during Coral-Bacteria Interactions

Ocean warming has exacerbated the severity of coral diseases, many of which are mediated by pathogenic bacteria. In response to the presence of pathogens various organisms activate an oxidative burst response, involving strong and rapid generation of reactive oxygen species (ROS) that serve both as bactericides and as signals for other defense systems. While many components of the coral immune ...

متن کامل

Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora pistillata

Citation: Einbinder S, Gruber DF, Salomon E, Liran O, Keren N and Tchernov D (2016) Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora pistillata. Front. Mar. Sci. 3:195. doi: 10.3389/fmars.2016.00195 Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora...

متن کامل

High phosphate uptake requirements of the scleractinian coral Stylophora pistillata.

Several untested aspects of the regulation of inorganic nutrient uptake were examined using nutrient depletion experiments with the symbiotic coral Stylophora pistillata. The total inhibition of phosphate uptake in artificial seawater lacking sodium indicates the involvement of a sodium/phosphate symporter for the uptake of phosphate across host membranes. Addition of ammonium or nitrate (up to...

متن کامل

The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria.

Endozoicomonas bacteria were found highly associated with the coral Stylophora pistillata, and these bacteria are also ubiquitously associated with diverse corals worldwide. Novel Endozoicomonas-specific probes revealed that Endozoicomonas bacteria were abundant in the endodermal tissues of S. pistillata and appear to have an intimate relationship with the coral.

متن کامل

Shallow-water wave lensing in coral reefs: a physical and biological case study.

Wave lensing produces the highest level of transient solar irradiances found in nature, ranging in intensity over several orders of magnitude in just a few tens of milliseconds. Shallow coral reefs can be exposed to wave lensing during light-wind, clear-sky conditions, which have been implicated as a secondary cause of mass coral bleaching through light stress. Management strategies to protect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016